EECS 442 Discussion

Arash Ushani

September 16, 2015

About Me

- GSI: Arash Ushani (aushani@umich.edu)
- 3rd year PhD student in Perceptual Robotics Lab (PeRL)
- http://robots.engin.umich.edu

Autonomous Cars!

My Research

- Autonomous vehicles
- Obstacle detection and tracking

My 442 Project

- Turn signal and stop light detection aided by LIDAR point clouds

Logistics

- Please use Piazza for questions regarding the course or material (no technical questions via email)
- If you have topics/questions you want to go over in discussion, please post them in Piazza
- Professor Office Hours Mondays 3-4 PM in NAME 201
- GSI Office Hours Tuesdays 2-3 PM in EECS 2420

Rigid Body Transform (RBT)

- What is a rigid body transform?

Scaling

- How do we scale a vector?

Scaling

- How do we scale a vector?
- $\mathbf{T}=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$

Scaling

- How do we scale a vector?
- $\mathbf{T}=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$

Example: scale vector by 2

$$
\begin{aligned}
x & =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\mathbf{T} & =\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
\mathbf{T} x & =\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

Rotation

- How do we rotate a vector?

Rotation

- How do we rotate a vector?
- $\mathbf{T}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Rotation

- How do we rotate a vector?
- $\mathbf{T}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Example: rotate vector by 90°

$$
\begin{aligned}
x & =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\mathbf{T} & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
\mathbf{T} x & =\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{aligned}
$$

Translation

- How do we translate a vector?

Translation

- How do we translate a vector?
- Need to use homogeneous coordinates!
- $\left[\begin{array}{l}x \\ y\end{array}\right]$ is represented by $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is converted back by doing $\left[\begin{array}{l}x / z \\ y / z\end{array}\right]$

Translation

- How do we translate a vector?
- Need to use homogeneous coordinates!
- $\left[\begin{array}{l}x \\ y\end{array}\right]$ is represented by $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is converted back by doing $\left[\begin{array}{l}x / z \\ y / z\end{array}\right]$
- $\mathbf{T}=\left[\begin{array}{llr}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right]$

Translation

Example: translate vector by $(3,4)$

$$
\begin{aligned}
x & =\left[\begin{array}{l}
1 \\
2
\end{array}\right], \tilde{x}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \\
\mathbf{T} & =\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right] \\
\mathbf{T} \tilde{x} & =\left[\begin{array}{l}
4 \\
6 \\
1
\end{array}\right]
\end{aligned}
$$

Combinations

- Let's rotate and scale

Example: scale vector by 2 and then rotate by 90°

$$
\begin{aligned}
x & =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\mathbf{R} & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
\mathbf{S} & =\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
\mathbf{T} & =\mathbf{R S} \\
\mathbf{T} x & =\mathbf{R S} x=\left[\begin{array}{c}
-4 \\
2
\end{array}\right]
\end{aligned}
$$

MATLAB Exercise

- Go to CTools \rightarrow Resources \rightarrow Discussion \rightarrow 09-16_matlab.zip

