EECS 442 Discussion

Arash Ushani

September 20, 2016

Projective Geometry

- For more detail, see HZ Chapter 2

Representing Lines

- How do we represent a line?

Representing Lines

- How do we represent a line?

$$
\begin{array}{r}
a x+b y+c=0 \\
\mathbf{I}=(a, b, c)^{\top}
\end{array}
$$

Representing Lines

- How do we represent a line?

$$
\begin{array}{r}
a x+b y+c=0 \\
\mathbf{I}=(a, b, c)^{\top}
\end{array}
$$

- Is this a unique representation?

Representing Lines

- How do we represent a line?

$$
\begin{gathered}
a x+b y+c=0 \\
\mathbf{I}=(a, b, c)^{\top}
\end{gathered}
$$

- Is this a unique representation?

$$
\begin{array}{r}
(k a) x+(k b) y+k c=0 \\
\mathbf{I}=(k a, k b, k c)^{\top}
\end{array}
$$

- Equivalance Classes

Points on Lines

- How can we tell if a point $(x, y)^{\top}$ is on the line $\mathbf{I}=(a, b, c)^{\top}$

Points on Lines

- How can we tell if a point $(x, y)^{\top}$ is on the line $\mathbf{I}=(a, b, c)^{\top}$

$$
a x+b y+c=0
$$

Points on Lines

- How can we tell if a point $(x, y)^{\top}$ is on the line $\mathbf{I}=(a, b, c)^{\top}$

$$
a x+b y+c=0
$$

$$
\begin{aligned}
\mathbf{x} & =(x, y, 1)^{\top} \\
\mathbf{x}^{\top} \mathbf{I} & =0 \\
\mathbf{I}^{\top} \mathbf{x} & =0
\end{aligned}
$$

Intersection of Lines

- How do we find the intersection \mathbf{x} of lines $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$

Intersection of Lines

- How do we find the intersection \mathbf{x} of lines $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$

$$
\begin{aligned}
\mathbf{x}^{\top} \mathbf{I}_{\mathbf{1}} & =0 \\
\mathbf{x}^{\top} \mathbf{I}_{\mathbf{2}} & =0
\end{aligned}
$$

Intersection of Lines

- How do we find the intersection \mathbf{x} of lines $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$

$$
\begin{aligned}
\mathbf{x}^{\top} \mathbf{I}_{\mathbf{1}} & =0 \\
\mathbf{x}^{\top} \mathbf{I}_{\mathbf{2}} & =0
\end{aligned}
$$

$$
\mathbf{x}=\mathbf{I}_{\mathbf{1}} \times \mathbf{I}_{\mathbf{2}}
$$

Line through two points

- How do we find the line \mathbf{I} that goes through $\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}_{\mathbf{2}}$

Line through two points

- How do we find the line \mathbf{I} that goes through \mathbf{x}_{1} and \mathbf{x}_{2}

$$
\begin{aligned}
\mathbf{x}_{\mathbf{1}}^{\top} \mathbf{I} & =0 \\
\mathbf{x}_{\mathbf{2}}^{\top} \mathbf{I} & =0
\end{aligned}
$$

Line through two points

- How do we find the line \mathbf{I} that goes through \mathbf{x}_{1} and \mathbf{x}_{2}

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}}^{\top} \mathbf{I}=0 \\
& \mathbf{x}_{\mathbf{2}}^{\top} \mathbf{I}=0
\end{aligned}
$$

$$
\mathbf{I}=\mathbf{x}_{1} \times \mathbf{x}_{2}
$$

HW Hints: Lines and transformations

- Helpful identity:

$$
(\mathbf{H} \mathbf{x}) \times(\mathbf{H y})=(\operatorname{det} \mathbf{H}) \mathbf{H}^{-\top}(\mathbf{x} \times \mathbf{y})
$$

HW Hints: Lines and transformations

- Helpful identity:

$$
(\mathbf{H} \mathbf{x}) \times(\mathbf{H y})=(\operatorname{det} \mathbf{H}) \mathbf{H}^{-\top}(\mathbf{x} \times \mathbf{y})
$$

- Alernatively, if $\mathbf{I}^{\top} \mathbf{x}=0$, what can you say about $\mathbf{I}^{\top} \mathbf{H}^{-1} \mathbf{H x}$ if \mathbf{H} is a projective transformation?

MATLAB Exercise

- Go to CTools \rightarrow Resources \rightarrow Discussion \rightarrow 09_23_matlab.zip

Direct Linear Transform

- For more detail, see chapter 4 section 1 in HZ

Direct Linear Transform

- We have a set of point correspondences \mathbf{x}_{i} to \mathbf{x}_{i}^{\prime}
- We want to find the transformation \mathbf{H} such that $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$

Direct Linear Transform

- We have a set of point correspondences \mathbf{x}_{i} to \mathbf{x}_{i}^{\prime}
- We want to find the transformation \mathbf{H} such that $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$
- How many degrees of freedom are there in \mathbf{H} ?

Direct Linear Transform

- We have a set of point correspondences \mathbf{x}_{i} to \mathbf{x}_{i}^{\prime}
- We want to find the transformation \mathbf{H} such that $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$
- How many degrees of freedom are there in \mathbf{H} ?
- 8

Direct Linear Transform

- We have a set of point correspondences \mathbf{x}_{i} to \mathbf{x}_{i}^{\prime}
- We want to find the transformation \mathbf{H} such that $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$
- How many degrees of freedom are there in \mathbf{H} ?
- 8
- How many correspondences do we need?

Direct Linear Transform

- We have a set of point correspondences \mathbf{x}_{i} to \mathbf{x}_{i}^{\prime}
- We want to find the transformation \mathbf{H} such that $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$
- How many degrees of freedom are there in \mathbf{H} ?
- 8
- How many correspondences do we need?
- 4

Direct Linear Transform

- If $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$, equivalently $\mathbf{x}_{i}^{\prime} \times\left(\mathbf{H} \mathbf{x}_{i}\right)=\mathbf{0}$

Direct Linear Transform

- If $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$, equivalently $\mathbf{x}_{i}^{\prime} \times\left(\mathbf{H} \mathbf{x}_{i}\right)=\mathbf{0}$
- $\mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{l}\mathbf{h}^{1 \top} \mathbf{x}_{i} \\ \mathbf{h}^{2 \top} \mathbf{x}_{i} \\ \mathbf{h}^{3 \top} \mathbf{x}_{i}\end{array}\right]$ where each $\mathbf{h}^{j \top}$ is a row in \mathbf{H}

Direct Linear Transform

- If $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$, equivalently $\mathbf{x}_{i}^{\prime} \times\left(\mathbf{H} \mathbf{x}_{i}\right)=\mathbf{0}$
- $\mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{l}\mathbf{h}^{1 \top} \mathbf{x}_{i} \\ \mathbf{h}^{2 \top} \mathbf{x}_{i} \\ \mathbf{h}^{3 \top} \mathbf{x}_{i}\end{array}\right]$ where each $\mathbf{h}^{j \top}$ is a row in \mathbf{H}
- If $\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top}$, then:

$$
\mathbf{x}_{i}^{\prime} \times\left(\mathbf{H} \mathbf{x}_{i}\right)=\left[\begin{array}{l}
y_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}
\end{array}\right]=\mathbf{0}
$$

Direct Linear Transform

- If $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$, equivalently $\mathbf{x}_{i}^{\prime} \times\left(\mathbf{H} \mathbf{x}_{i}\right)=\mathbf{0}$
- $\mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{l}\mathbf{h}^{1 \top} \mathbf{x}_{i} \\ \mathbf{h}^{2 \top} \mathbf{x}_{i} \\ \mathbf{h}^{3 \top} \mathbf{x}_{i}\end{array}\right]$ where each $\mathbf{h}^{j \top}$ is a row in \mathbf{H}
- If $\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top}$, then:

$$
\begin{gathered}
\mathbf{x}_{i}^{\prime} \times\left(\mathbf{H} \mathbf{x}_{i}\right)=\left[\begin{array}{l}
y_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}
\end{array}\right]=\mathbf{0} \\
{\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{\top} & x_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\left[\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right]=\mathbf{0}}
\end{gathered}
$$

Direct Linear Transform

$$
\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left[\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right]=\mathbf{0}
$$

Direct Linear Transform

$$
\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left[\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right]=\mathbf{0}
$$

$\mathbf{A}_{\mathbf{i}}\left[\begin{array}{l}\mathbf{h}^{1} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3}\end{array}\right]=\mathbf{0}$

Direct Linear Transform

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left[\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right]=\mathbf{0}} \\
\mathbf{A}_{\mathbf{i}}\left[\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right]=\mathbf{0}
\end{gathered}
$$

- With 4 correspondences, we have $\mathbf{A h}=\mathbf{0}$ where \mathbf{A} is rank 8

Direct Linear Transform

- What if we have more than 4 correspondences? (Why would we have more than 4?)

Direct Linear Transform

- What if we have more than 4 correspondences? (Why would we have more than 4?)
- Overdetermined solution, find \mathbf{h} that minimizes error (with $\|\mathbf{h}\|=1$)
- It can be shown that the singular vector corresponding to the smallest singular value of \mathbf{A} is the solution to \mathbf{h} that minimizes $\|\mathbf{A h}\|$

Direct Linear Transform

- What if we have more than 4 correspondences? (Why would we have more than 4?)
- Overdetermined solution, find \mathbf{h} that minimizes error (with $\|\mathbf{h}\|=1$)
- It can be shown that the singular vector corresponding to the smallest singular value of \mathbf{A} is the solution to \mathbf{h} that minimizes $\|\mathbf{A h}\|$
- SVD Decomposition:

$$
\mathbf{A}=\mathbf{U D V}^{\top}
$$

- \mathbf{D} is a diagonal matrix of the singular values of \mathbf{A}
- \mathbf{V} contains the singular vectors of \mathbf{A} as column vectors

Next Week

- Guest Speaker: Steven Parkison, Calibration Expert
- No Office Hours

