EECS 442 Discussion

Arash Ushani

October 14, 2015

Announcements

- HW2 due 10/15
- Project Proposals due $10 / 22$
- Jon Beaumont from ETC coming in next week for a Midterm Student Feedback session

HW2 Problem 1a

$$
\begin{aligned}
M & =\left[\begin{array}{ll}
A & b
\end{array}\right] \\
M^{\prime} & =\left[\begin{array}{lll}
A^{\prime} & b^{\prime}
\end{array}\right] \\
\hat{M} & =\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & b_{1} \\
0 & a_{22} & a_{23} \\
b_{2} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- $a_{i j}$ is not referring to the elements of A
- b_{i} is not referring to the elements of b

Stereo Cameras

- Why use more than one camera?

(a) Left

(b) Right

Sample stereo images from OpenCV

Correspondence Problem

- Point in image (a), where is it in image (b)?

(a) Left

(b) Right

Sample stereo images from OpenCV

Correspondence Problem

- Can't determine exactly, but can constrain with epipolar geometry

(a) Left

(b) Right

Sample stereo images from OpenCV

Epipolar geometry

- Epipolar Plane
- Baseline
- Epipolar Lines
- Epipoles $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center

Epipolar Geometry

- "Point transfer via plane π " (See HZ Chp 9)

$$
\begin{aligned}
x & =H_{1} x_{\pi} \quad x^{\prime}=H_{2} x_{\pi} \\
x^{\prime} & =H_{2} H_{1}^{-1} x \\
x^{\prime} & =H_{\pi} x
\end{aligned}
$$

Epipolar Geometry

- What is the epipole?

Epipolar Geometry

- What is the epipole?

Just where one camera is in the other camera's frame

Epipolar Geometry

- What is the epipole?

Just where one camera is in the other camera's frame

- Given point x^{\prime}, what is the epipolar line passing through x^{\prime} and e^{\prime} ?

Epipolar Geometry

- What is the epipole?

Just where one camera is in the other camera's frame

- Given point x^{\prime}, what is the epipolar line passing through x^{\prime} and e^{\prime} ?

$$
I^{\prime}=e^{\prime} \times x^{\prime}=\left[e^{\prime}\right]_{x} x^{\prime}
$$

Epipolar Geometry

- What is the epipole?

Just where one camera is in the other camera's frame

- Given point x^{\prime}, what is the epipolar line passing through x^{\prime} and e^{\prime} ?

$$
I^{\prime}=e^{\prime} \times x^{\prime}=\left[e^{\prime}\right]_{x} x^{\prime}
$$

- Recall that $x^{\prime}=H_{\pi} x$

$$
\begin{aligned}
& I^{\prime}=\left[e^{\prime}\right]_{x} H_{\pi} x \\
& I^{\prime}=F X
\end{aligned}
$$

where $F=\left[e^{\prime}\right]_{x} H_{\pi}$.

Fundamental Matrix: Rank

- $F=\left[e^{\prime}\right]_{x} H_{\pi}$
- What is the rank of H_{π} ?

Fundamental Matrix: Rank

- $F=\left[e^{\prime}\right]_{x} H_{\pi}$
- What is the rank of H_{π} ? 3
- What is the rank of $\left[e^{\prime}\right]_{x}$?

Fundamental Matrix: Rank

- $F=\left[e^{\prime}\right]_{x} H_{\pi}$
- What is the rank of H_{π} ? 3
- What is the rank of $\left[e^{\prime}\right]_{x}$? 2
- Rank of a product is in the minimum of the ranks of the terms in the product, so $\operatorname{rank}(F)=\min \left(\operatorname{rank}(H), \operatorname{rank}\left(\left[e^{\prime}\right]_{x}\right)=2\right.$
- Makes sense, because we're mapping points to lines, and multiple points can end up on the same line

Fundamental Matrix: Degrees of Freedom

- Recall that F is rank 2

$$
\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
\alpha a+\beta d & \alpha b+\beta e & \alpha c+\beta f
\end{array}\right]
$$

Fundamental Matrix: Degrees of Freedom

- Recall that F is rank 2

$$
\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
\alpha a+\beta d & \alpha b+\beta e & \alpha c+\beta f
\end{array}\right]
$$

- So 8 degrees of freedom left

Fundamental Matrix: Degrees of Freedom

- Recall that F is rank 2

$$
\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
\alpha a+\beta d & \alpha b+\beta e & \alpha c+\beta f
\end{array}\right]
$$

- So 8 degrees of freedom left
- Recall what we're using F for: $I^{\prime}=F x$
- Everything is in homogeneous coordinates, F only defined up to scale

Fundamental Matrix: Degrees of Freedom

- Recall that F is rank 2

$$
\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
\alpha a+\beta d & \alpha b+\beta e & \alpha c+\beta f
\end{array}\right]
$$

- So 8 degrees of freedom left
- Recall what we're using F for: $I^{\prime}=F x$
- Everything is in homogeneous coordinates, F only defined up to scale
- Therefore, F has 7 degrees of freedom

Fundamental Matrix: Correspondence Condition

- The epipolar line for x is given by $I^{\prime}=F x$
- What do we know about the corresponding point x^{\prime} ?

Fundamental Matrix: Correspondence Condition

- The epipolar line for x is given by $I^{\prime}=F x$
- What do we know about the corresponding point x^{\prime} ? x^{\prime} lies on I^{\prime}

Fundamental Matrix: Correspondence Condition

- The epipolar line for x is given by $I^{\prime}=F x$
- What do we know about the corresponding point x^{\prime} ? x^{\prime} lies on I^{\prime}
- Therefore, $x^{\prime^{\top}} I^{\prime}=x^{\prime \top} F x=0$

Fundamental Matrix: Correspondence Condition

- The epipolar line for x is given by $I^{\prime}=F x$
- What do we know about the corresponding point x^{\prime} ? x^{\prime} lies on I^{\prime}
- Therefore, $x^{\prime^{\top}} I^{\prime}=x^{\prime^{\top}} F x=0$
- What about F^{\top} ?
- $\left(x^{\prime^{\top}} F x\right)^{\top}=x^{\top} F^{\top} x^{\prime}=0$

Fundamental Matrix: Relationship with Epipoles

- Given any point $x, I^{\prime}=F x$

Fundamental Matrix: Relationship with Epipoles

- Given any point $x, I^{\prime}=F x$
- Epipolar lines always pass through epipole (no matter what point x we choose)

$$
\begin{array}{r}
e^{\prime \top} l^{\prime}=0 \\
e^{\prime \top} F X=0 \\
e^{\prime \top} F=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array}
$$

Fundamental Matrix: Relationship with Epipoles

- Given any point $x, I^{\prime}=F x$
- Epipolar lines always pass through epipole (no matter what point x we choose)

$$
\begin{array}{r}
e^{\prime \top} l^{\prime}=0 \\
e^{\prime \top} F X=0 \\
e^{\prime \top} F=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array}
$$

- So, e^{\prime} is the left null-vector of F
- Similarly, e is the right null-vector of F

