EECS 442 Discussion

Arash Ushani

October 21, 2015

Announcements

- HW3 due 10/29
- Project Proposals due $10 / 22$
- Thank you for filling out midterm evaluations!
- Jon Beaumont from ETC is here for a Midterm Student Feedback session

Perspective Camera Model

$$
\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Affine Camera Model

$$
\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Affine Camera Model

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Why do this?

Affine Camera Model

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Why do this?
- What are the knowns and unknowns?

Affine Camera Model

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Why do this?
- What are the knowns and unknowns?
- How many unknowns?

Affine Camera Model

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Why do this?
- What are the knowns and unknowns?
- How many unknowns? 8

Affine Camera Model

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Why do this?
- What are the knowns and unknowns?
- How many unknowns? 8
- How many constraints per correspondence?

Affine Camera Model

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Why do this?
- What are the knowns and unknowns?
- How many unknowns? 8
- How many constraints per correspondence? 2

Solving for camera matrix

$$
\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- We want to set up a least squares problem to solve for the unknowns.

$$
\mathbf{A} p=b
$$

Solving for camera matrix

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
X p_{11}+Y p_{12}+Z p_{13}+p_{14} \\
X p_{21}+Y p_{22}+Z p_{23}+p_{24} \\
1
\end{array}\right]}
\end{aligned}
$$

Solving for camera matrix

$$
\left[\begin{array}{cccccccc}
X & Y & Z & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & X & Y & Z & 1
\end{array}\right]\left[\begin{array}{l}
p_{11} \\
p_{12} \\
p_{13} \\
p_{14} \\
p_{21} \\
p_{22} \\
p_{23} \\
p_{24}
\end{array}\right]=\left[\begin{array}{c}
x \\
y
\end{array}\right]
$$

Solving for camera matrix

Solving for camera matrix

- Stack all constraints from correspondences into \mathbf{A} and find least squares solution!

MATLAB Exercise

(a) Image $1(\mathrm{z}=45 \mathrm{~cm})$

(b) Image $2(\mathrm{z}=65 \mathrm{~cm})$

- Go to CTools \rightarrow Resources \rightarrow Discussion \rightarrow 10_21_matlab.zip
- Given a set of correspondences in each image to world frame points, find camera matrix

$$
\mathbf{M}=\left[\begin{array}{cccc}
48.003 & -0.05515 & 3.6068 & 1112.3 \\
0.23531 & 47.705 & -0.62871 & 731.86 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

