EECS 442 Discussion

Arash Ushani

October 28, 2015

Announcements

- HW3 due $10 / 29$

Single View Geometry: Vanishing Points

- Goal: Find the camera calibration matrix K given a single image by using vanishing points

From the homework...

- Consider two orthogonal lines d_{i} and d_{j}
- How can we relate d_{i} and d_{j} ?

From the homework...

- Consider two orthogonal lines d_{i} and d_{j}
- How can we relate d_{i} and d_{j} ? $d_{i}^{\top} d_{j}=0$

From the homework...

- Consider two orthogonal lines d_{i} and d_{j}
- How can we relate d_{i} and d_{j} ? $d_{i}^{\top} d_{j}=0$
- How can we relate their vanishing points v_{i} and v_{j} ?

From the homework...

- Consider two orthogonal lines d_{i} and d_{j}
- How can we relate d_{i} and d_{j} ?
$d_{i}^{\top} d_{j}=0$
- How can we relate their vanishing points v_{i} and v_{j} ?
$\left(K^{-1} v_{i}\right)^{\top}\left(K^{-1} v_{j}\right)=0$

From the homework...

- Consider two orthogonal lines d_{i} and d_{j}
- How can we relate d_{i} and d_{j} ?
$d_{i}^{\top} d_{j}=0$
- How can we relate their vanishing points v_{i} and v_{j} ?
$\left(K^{-1} v_{i}\right)^{\top}\left(K^{-1} v_{j}\right)=0$
- Consider:

$$
\begin{aligned}
\left(v_{i}^{\top} K^{-\top}\right)\left(K^{-1} v_{j}\right) & =0 \\
v_{i}^{\top} \underbrace{\left(K^{-\top} K^{-1}\right)}_{w} v_{j} & =0
\end{aligned}
$$

Image of the Absolute Conic

$$
v_{i}^{\top} W v_{j}=0
$$

- W is "the image of the absolute conic" (more detail in [HZ] 8.5)
- If we can solve for W, we can recover K

How do we solve for W ?

$$
W=\left[\begin{array}{lll}
w_{1} & w_{2} & w_{3} \\
w_{4} & w_{5} & w_{6} \\
w_{7} & w_{8} & w_{9}
\end{array}\right]
$$

How do we solve for W ?

$$
W=\left[\begin{array}{lll}
w_{1} & w_{2} & w_{3} \\
w_{2} & w_{4} & w_{5} \\
w_{3} & w_{5} & w_{6}
\end{array}\right]
$$

- $W=K^{-\top} K^{-1}$ is symmetric

How do we solve for W ?

$$
W=\left[\begin{array}{ccc}
w_{1} & 0 & w_{2} \\
0 & w_{1} & w_{3} \\
w_{2} & w_{3} & w_{4}
\end{array}\right]
$$

- $W=K^{-\top} K^{-1}$ is symmetric
- Assume camera is zero-skew $(s=0)$ and square pixels $\left(\alpha_{x}=\alpha_{y}\right)$

How do we solve for W ?

$$
\begin{aligned}
v_{i}^{\top} W v_{j} & =0 \\
{\left[\begin{array}{lll}
v_{i x} & v_{i y} & 1
\end{array}\right]\left[\begin{array}{ccc}
w_{1} & 0 & w_{2} \\
0 & w_{1} & w_{3} \\
w_{2} & w_{3} & w_{4}
\end{array}\right]\left[\begin{array}{c}
v_{j x} \\
v_{j y} \\
1
\end{array}\right] } & =0
\end{aligned}
$$

How do we solve for W ?

$$
\begin{aligned}
& v_{i}^{\top} W v_{j}=0 \\
& {\left[\begin{array}{lll}
v_{i x} & v_{i y} & 1
\end{array}\right]\left[\begin{array}{ccc}
w_{1} & 0 & w_{2} \\
0 & w_{1} & w_{3} \\
w_{2} & w_{3} & w_{4}
\end{array}\right]\left[\begin{array}{c}
v_{j x} \\
v_{j y} \\
1
\end{array}\right]=0} \\
& {\left[\begin{array}{llll}
v_{i x} v_{j x}+v_{i y} v_{j y} & v_{i x}+v_{j x} & v_{i y}+v_{j y} & 1
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right]=0}
\end{aligned}
$$

How do we solve for W ?

- How do we solve for W ?

How do we solve for W ?

- How do we solve for W ?

Find nullspace of A (remember W defined up to scale)

How do we solve for W ?

$$
\left.\begin{array}{rl}
\underbrace{}_{A_{i j}}\left[v_{i x} v_{j x}+v_{i y} v_{j y}\right. & v_{i x}+v_{j x} \\
v_{i y}+v_{j y} & 1
\end{array}\right] \quad\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right]=0
$$

- How do we solve for W ?

Find nullspace of A (remember W defined up to scale)

- How many pairs of orthogonal vanishing points do we need?

How do we solve for W ?

$$
\left.\begin{array}{rl}
\underbrace{}_{A_{i j}}\left[v_{i x} v_{j x}+v_{i y} v_{j y}\right. & v_{i x}+v_{j x} \\
v_{i y}+v_{j y} & 1
\end{array}\right] \quad\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right]=0
$$

- How do we solve for W ?

Find nullspace of A (remember W defined up to scale)

- How many pairs of orthogonal vanishing points do we need? 3

Given W, how do we solve for K ?

- Recall that $W=K^{-\top} K^{-1}$
- For a symmetric matrix, $A=L L^{\top}$ is called the Cholesky decomposition
- We can find K by finding the Cholesky decomposition of W and then taking the inverse (in MATLAB, we can use the chol function)
- Remember to normalize K such that $K_{33}=1$

MATLAB Exercise

- Go to CTools \rightarrow Resources \rightarrow Discussion \rightarrow 10_28_matlab.zip
- Given a single image, find a set of vanishing points and compute the camera calibration matrix

$$
K=\left[\begin{array}{ccc}
2493 & 0 & 1023.5 \\
0 & 2493 & 664 \\
0 & 0 & 1
\end{array}\right]
$$

