# EECS 442 Discussion 

Arash Ushani

November 18, 2015

## Announcements

- Project Progress Reports due $11 / 19$


## Midterm Student Feedback Session

- Thanks!
- Volume: I'll try to speak louder and repeat questions/answers
- Questions in discussion / explanation of content
- Solutions to MATLAB examples / questions on piazza
- More visuals / details in the slides


## Descriptors for Images

- Why use a descriptor?



## Histogram of Oriented Gradients

- Key idea: capture the local gradient pattern in image


descriptor


## Histogram of Oriented Gradients

- Key idea: capture the local gradient pattern in image



## Compute Gradients

- Find $X$ and $Y$ gradient of image
- Convert this to polar (magnitude and direction of gradient)



## Orientation Binning

- Divide image into "cells" and "blocks"
- Each cell contains a small number of pixels, and each block contains a small number of cells
- In each cell, compute a histogram of orientations


descriptor


## Orientation Binning

- Goal: Create a histogram of orientations for each cell
- What are the possible orientations?


## Orientation Binning

- Goal: Create a histogram of orientations for each cell
- What are the possible orientations?

0-360 (or 0-180 if we ignore sign)

## Orientation Binning

- Goal: Create a histogram of orientations for each cell
- What are the possible orientations?

0-360 (or 0-180 if we ignore sign)

- Divide $0-180$ into N bins (9 is typical)
- Each pixel votes in the histogram according to the magnitude of its gradient
- To address discretization, each bin can vote for multiple pixels based on linear interpolation



## Orientation Binning: Example

- Histogram from 0 to 180 with 9 bins (centered at $10,30,50, \ldots$ )
- Pixel with $\theta=25, u=10$


## Orientation Binning: Example

- Histogram from 0 to 180 with 9 bins (centered at $10,30,50, \ldots$ )
- Pixel with $\theta=25, u=10$
- Which bins?


## Orientation Binning: Example

- Histogram from 0 to 180 with 9 bins (centered at $10,30,50, \ldots$ )
- Pixel with $\theta=25, u=10$
- Which bins? bin 1 (centered at 10) and bin 2 (centered at 30)
- What are the votes for each bin?


## Orientation Binning: Example

- Histogram from 0 to 180 with 9 bins (centered at $10,30,50, \ldots$ )
- Pixel with $\theta=25, u=10$
- Which bins? bin 1 (centered at 10 ) and bin 2 (centered at 30)
- What are the votes for each bin?

$$
\begin{aligned}
30-\theta & =5 \\
\frac{5}{180 / N} & =\frac{5}{20}=0.25 \\
0.25 u & =2.5 \\
0.75 u & =7.5
\end{aligned}
$$

- 2.5 to bin 1 (centered at 10 ), 7.5 to bin 2 (centered at 30 )


## Blocks

- Group cells into overlapping blocks
- For each $2 \times 2$ set of cells, concatentate the four cells histograms together into a single block feature $b$
- Normalize b


Image gradients

descriptor

## Final Descriptor

- Concatenate all block histograms together into a single descriptor $h$
- Normalize $h$
- Threshold all values of $h$ so that all elements of $h$ are below a threshold $\tau$ (0.2 is typical)
- Renormalize $h$
- Why?


## Final Descriptor

- Concatenate all block histograms together into a single descriptor $h$
- Normalize $h$
- Threshold all values of $h$ so that all elements of $h$ are below a threshold $\tau$ (0.2 is typical)
- Renormalize $h$
- Why? To prevent strong gradients from dominating the whole image


## MATLAB

- Go to CTools $\rightarrow$ Resources $\rightarrow$ Discussion $\rightarrow$ 11_18_matlab.zip
- Given an image, compute the HOG descriptor


